Combined coaxial and bimanual irrigation/aspiration apparatus

Abstract

A hand piece having an irrigation portion and an aspiration portion that are releasably coupled is disclosed. In an assembled configuration, the irrigation portion and the aspiration portion are coupled such that the hand piece may be manipulable by a user as a single unit. In a separated configuration, the irrigation portion and the aspiration portion may be utilized separate from each other. The irrigation portion and the aspiration portion may be freely moved between the assembled configuration and the separated configuration.

Claims

We claim: 1. An Irrigation/Aspiration (I/A) hand piece comprising: an irrigation portion comprising a hand graspable handpiece body with an outer surface gripping portion; and an aspiration portion comprising a hand graspable handpiece body with an outer surface gripping portion, one of the body of the irrigation portion or body of the aspiration portion comprising an integral, longitudinally extending receptacle into which at least a portion of the other of the irrigation portion or aspiration portion is removably received in a manner forming a single graspable outer surface portion for both the irrigation portion and aspiration portion that is graspable by one hand for both irrigation and aspiration of a surgical site. 2. The I/A hand piece of claim 1 , wherein one of the irrigation portion or the aspiration portion comprises a recess within the hand graspable handpiece body and wherein the hand graspable handpiece body of the other of the irrigation portion or the aspiration portion includes a profile configured to be releasably received into the recess. 3. The I/A hand piece of claim 2 , wherein the recess extends longitudinally along the hand graspable handpiece body. 4. The I/A hand piece of claim 1 , wherein the receptacle and the portion of the other of the irrigation portion or the aspiration portion received within the receptacle form a fluid-tight seal. 5. The hand piece of claim 1 , wherein the hand piece is selectively configurable between an assembled configuration in which the irrigation portion and the aspiration portion are coupled together such that the at least a portion of irrigation portion or the aspiration portion is received within the receptacle of the other of the irrigation portion or the aspiration portion and a separated configuration in which the irrigation portion and the aspiration portion are decoupled from each other. 6. The I/A hand piece of claim 5 further comprising an irrigation sleeve. 7. The I/A hand piece of claim 6 , wherein the aspiration portion comprises the receptacle, and wherein at least a portion of the irrigation portion is received within the receptacle in the assembled configuration. 8. The I/A hand piece of claim 7 , wherein the irrigation sleeve is coupled to a distal end of the aspiration portion, wherein the aspiration portion comprises an aspiration needle, the aspiration needle extending through an opening formed in the irrigation sleeve, wherein the irrigation portion comprises a passage, and wherein the passage of the irrigation portion communicates with an interior of the irrigation sleeve. 9. The I/A hand piece of claim 7 , wherein a proximal portion of the irrigation sleeve is releasably coupled to a distal end of the aspiration portion. 10. The hand piece of claim 7 , wherein the irrigation portion comprises a longitudinally-extending recess and wherein the aspiration portion comprises a cross-sectional shape configured to be releasably received into the longitudinally-extending recess. 11. The I/A hand piece of claim 6 , wherein the irrigation portion comprises the receptacle, and wherein at least a portion of the aspiration portion is received within the receptacle in the assembled configuration. 12. The I/A hand piece of claim 11 , wherein the irrigation portion comprises an annular outlet formed at a distal end thereof and wherein the receptacle of the irrigation portion defines a central opening disposed in a central region circumscribed by the annular opening. 13. The hand piece of claim 12 , wherein the aspiration portion is received in the receptacle, a distal portion of the aspiration portion extending through the central opening of the irrigation portion. 14. The I/A hand piece of claim 13 , wherein the aspiration portion comprises an aspiration needle, wherein the irrigation sleeve is coupled to a distal end of the irrigation portion, and wherein the aspiration needle extends through an opening formed in the irrigation sleeve. 15. The I/A hand piece of claim 11 , wherein the irrigation portion comprises a longitudinally-extending recess and wherein the aspiration portion comprises a cross-sectional shape configured to be releasably received into the longitudinally-extending recess. 16. An Irrigation/Aspiration (I/A) hand piece comprising: an irrigation portion comprising: an inlet; an outlet: a passage extending between the inlet and the outlet; and a hand graspable handpiece body with an outer surface gripping portion: an aspiration portion comprising: an inlet; an outlet; a passage extending between the inlet and the outlet; a receptacle; and a hand graspable handpiece body with an outer surface gripping portion, the I/A hand piece selectively configurable between an assembled configuration in which a portion of the irrigation portion is releasably received into the receptacle of the aspiration portion in a manner forming a single graspable outer surface portion for both the irrigation portion and aspiration portion that is graspable by one hand for both irrigation and aspiration of a surgical site and a separated configuration in which the irrigation portion and the aspiration portion are decoupled from each other. 17. The I/A hand piece of claim 16 , wherein an inner surface of the receptacle and an outer surface of the irrigation portion form a fluid-tight seal around the irrigation portion. 18. The I/A hand piece of claim 16 further comprising an irrigation sleeve releasably coupled to a distal end of the aspiration portion. 19. The I/A hand piece of claim 18 , wherein the irrigation portion comprises an irrigation needle, an outlet of the irrigation needle in communication with an interior of the irrigation sleeve, wherein the aspiration portion comprises an aspiration needle, the aspiration needle extending through an opening formed in the irrigation sleeve. 20. The I/A hand piece of claim 16 , wherein the irrigation portion comprises a longitudinally-extending recess and wherein the aspiration portion comprises a cross-sectional shape configured to be releasably received into the longitudinally-extending recess. 21. An Irrigation/Aspiration (I/A) hand piece comprising: an irrigation portion comprising: an irrigation passage; and a first outer surface around the irrigation passage, the outer surface comprising a hand graspable handpiece body with an outer surface gripping portion; and an aspiration portion comprising: an aspiration passage; and an outer surface around the aspiration passage, the outer surface comprising a hand graspable handpiece body with an outer surface gripping portion, one of the irrigation portion or the aspiration portion comprising a receptacle into which at least a portion of the other of the irrigation portion or aspiration portion is removably received such that the first outer surface and second outer surface are aligned in series along a longitudinal axis to form a single graspable portion. 22. The I/A hand piece of claim 21 , wherein the irrigation portion is graspable for independent use by a user. 23. The I/A hand piece of claim 21 , wherein the aspiration portion is graspable for independent use by a user.
CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 61/579,774, filed Dec. 23, 2011, the entire contents of which are incorporated herein by reference. TECHNICAL FIELD The present disclosure relates to a surgical hand piece and particularly to an irrigation and aspiration hand piece for use during a surgical procedure. BACKGROUND The present disclosure relates generally to a combined coaxial and bimanual irrigation/aspiration (“I/A”) surgical instrument used in surgical procedures such as, for example, a phacoemulsification procedure. The human eye functions to provide vision by transmitting light through a clear outer portion called the cornea, and focusing the image by way of a crystalline lens onto a retina. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and the lens. When age or disease causes the lens to become less transparent, vision deteriorates because of the diminished light which can be transmitted to the retina. This deficiency in the lens of the eye is medically known as a cataract. An accepted treatment for this condition is surgical removal of the lens and replacement of the lens function by an artificial intraocular lens. SUMMARY According to one aspect, the disclosure describes an I/A hand piece that includes an irrigation portion and an aspiration portion. One of the irrigation portion or the aspiration portion may include a receptacle into which a portion of the other of the irrigation portion or the aspiration portion is removably received. Another aspect of the disclosure encompasses an I/A hand piece that includes an irrigation portion and an aspiration portion. The irrigation portion may include an inlet, and outlet, and a passage extending between the inlet and the outlet. The aspiration portion may include an inlet, an outlet, a passage extending between the inlet and the outlet, and a receptacle. The I/A hand piece may be selectively configured between an assembled configuration in which a portion of the irrigation portion is releasably received into the receptacle of the aspiration portion and a separated configuration in which the irrigation portion and the aspiration portion are decoupled from each other. The various aspects may include one or more of the following features. One of the irrigation portion or the aspiration portion may include a body defining a recess. The other of the irrigation portion or the aspiration portion may include a body having a profile configured to be releasably received into the recess. The recess may extend longitudinally along the body. The receptacle and the portion of the other of the irrigation portion or the aspiration portion may be received within the receptacle form a fluid-tight seal. The hand piece is selectively configurable between an assembled configuration in which the irrigation portion and the aspiration portion are coupled together such that the at least a portion of irrigation portion or the aspiration portion is received within the receptacle of the other of the irrigation portion or the aspiration portion and a separated configuration in which the irrigation portion and the aspiration portion are decoupled from each other. The hand piece may also include an irrigation sleeve. Also, the aspiration portion may include the receptacle, and at least a portion of the irrigation portion is may be received within the receptacle in the assembled configuration. The irrigation sleeve may be coupled to a distal end of the aspiration portion. The aspiration portion may include an aspiration needle, and the aspiration needle may extend through an opening formed in the irrigation sleeve. The irrigation portion may include a passage, and the passage of the irrigation portion may communicate with an interior of the irrigation sleeve. A proximal portion of the irrigation sleeve may be releasably coupled to a distal end of the aspiration portion. The irrigation portion may include a longitudinally-extending recess, and the aspiration portion may include a cross-sectional shape configured to be releasably received into the longitudinally-extending recess. Further, the irrigation portion may include the receptacle, and at least a portion of the aspiration portion may be received within the receptacle in the assembled configuration. The irrigation portion may include an annular outlet formed at a distal end thereof, and the receptacle of the irrigation portion may define a central opening disposed in a central region circumscribed by the annular opening. The aspiration portion may be received in the receptacle. A distal portion of the aspiration portion may extend through the central opening of the irrigation portion. The aspiration portion may include an aspiration needle. The irrigation sleeve may be coupled to a distal end of the irrigation portion, and the aspiration needle may extend through an opening formed in the irrigation sleeve. The irrigation portion may include a longitudinally-extending recess, and the aspiration portion may include a cross-sectional shape configured to be releasably received into the longitudinally-extending recess. The various aspects may also include one or more of the following features. An inner surface of the receptacle and an outer surface of the irrigation portion may form a fluid-tight seal around the irrigation portion. An irrigation sleeve may be releasably coupled to a distal end of the aspiration portion. The irrigation portion may include an irrigation needle. An outlet of the irrigation needle may be in communication with an interior of the irrigation sleeve. The aspiration portion may include an aspiration needle, and the aspiration needle may extend through an opening formed in the irrigation sleeve. The irrigation portion may include a longitudinally-extending recess, and the aspiration portion may include a cross-sectional shape configured to be releasably received into the longitudinally-extending recess. The details of one or more implementations of the present disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims. DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an example I/A hand piece. FIG. 2 is a cross-sectional view of the example I/A hand piece shown in FIG. 1 in an assembled configuration. FIG. 3 is a cross-sectional view of an example irrigation portion of the example I/A hand piece shown in FIG. 1 . FIG. 4 is a side view of the example irrigation portion shown in FIG. 3 . FIG. 5 is a front view of example irrigation portion shown in FIG. 3 . FIG. 6 is a cross-sectional view of an example aspiration portion of the example I/A hand piece shown in FIG. 1 . FIG. 7 is a transverse cross-sectional view along line A-A of the example aspiration portion of FIG. 6 . FIG. 8 is a cross-sectional view of an example irrigation sleeve. FIG. 9 is a side view of the example irrigation sleeve of FIG. 8 . FIG. 10 is a cross-sectional view of another example I/A hand piece in an assembled configuration. FIG. 11 is a cross-sectional view of an irrigation portion of the example I/A hand piece shown in FIG. 10 . FIG. 12 is front view of the example irrigation portion shown in FIG. 11 . FIG. 13 is a transverse cross-sectional view of the example irrigation portion of FIG. 11 along line B-B. FIG. 14 is a perspective view of a partial cross-section of another example irrigation portion having stiffening features. FIG. 15 is a cross-sectional view of an example aspiration portion of the example I/A hand piece of FIG. 10 . FIG. 16 is a transverse cross-sectional view of the example aspiration portion shown in FIG. 15 along line C-C. FIG. 17 is a cross-sectional view of an example irrigation sleeve. FIG. 18 is a side view of the example irrigation sleeve of FIG. 16 . FIG. 19 is a perspective view of a cross-section of an example irrigation sleeve that includes a stiffening feature. FIG. 20 is a transverse cross-sectional view of the example I/A hand piece of FIG. 10 along line D-D. FIG. 21 is another transverse cross-sectional view of the example I/A hand piece of FIG. 10 along line E-E. FIG. 22 is a partial detail view of the example hand piece shown in FIG. 2 . DETAILED DESCRIPTION The present disclosure relates to a surgical instrument for use in a surgical procedure. Particularly, the present disclosure relates to a hand piece operable to perform irrigation and aspiration in the course of a surgical procedure. Particularly, the surgical instrument is an I/A hand piece that is separable into an irrigation portion and an aspiration portion that may be used in a bimanual surgical procedure. In some implementations, the example surgical instruments described herein may be used in ophthalmic surgical procedures and, particularly, in phacoemulsification surgical procedures. FIGS. 1-9 show an example I/A hand piece 100 . The hand piece 100 includes an irrigation portion 102 , an aspiration portion 104 , and an irrigation sleeve 106 . FIG. 2 shows the hand piece 100 in an assembled configuration in which the irrigation portion 102 and the aspiration portion 104 are coupled together. In the assembled configuration, the hand piece 100 provides a single instrument that provides both irrigation and aspiration functionality. Thus, a user, such as, for example, a surgeon or other medical professional, can utilize the hand piece 100 using a single hand, freeing up the user to perform other tasks with the other hand. FIGS. 3-5 show an example irrigation portion 102 . FIG. 3 shows a cross-sectional view of the irrigation portion 102 . As shown, the irrigation portion 102 includes a body 108 and a passage 110 extending through the body 108 . The passage 110 extends from an inlet 112 disposed at a proximal end 114 and extends to an outlet 116 formed at a distal end 118 . An irrigation needle 120 is coupled to the irrigation portion 102 at the distal end 118 . In some implementations, a distal portion 122 of the passage 110 may have a reduced size. For example, in some instances, the distal portion 122 may have a smaller diameter cross section than a portion of the passage 110 adjacent thereto. In other instances, a size of the distal portion 122 may be continuous with an adjacent portion of the passage 110 . In still other implementations, a size of the distal portion 122 may have a larger cross-sectional shape than a portion of the passage 110 adjacent thereto. Further, in some implementations, the passage 110 may have a constant cross-section along a length of the irrigation portion 102 . In other implementations, the passage 110 may have a cross-section that varies along the length of the irrigation portion 102 . For example, in some instance, one or more portions of the passage 110 may have a tapered cross-section. In other instances, one or more portions of the passage 110 may have a stepped changed in cross-section. However, the passage 110 may have any desired cross-sectional provide along the length of the irrigation portion 102 . Further, in some instances, the passage 110 may have a circular cross-section. In other instances, one or more portions of the passage 110 may have a circular-cross section whereas one or more other portions of the passage 110 may have other cross-sectional shapes. Moreover, the cross-sectional profile of the passage 110 may have any desired shape. Referring again to FIG. 3 , the irrigation needle 120 may be received into the distal portion 122 of the passage 110 . In some instances, the irrigation needle 120 may form an interference fit with the distal portion 122 . In other instances, an adhesive may be used to attach the irrigation needle 120 within the distal portion 122 . Further, in still other instances, the body 108 may be formed around the irrigation needle 120 . That is, the irrigation needle 120 may be in place at the time of forming of the body 108 . For example, in some instances, the body 108 may be formed by an injection molding operation. Thus, the irrigation needle 120 may be positioned at a desired location in or relative to the injection mold at the time the body 108 is molded. The passage 110 may define a proximal portion 124 at the proximal end 114 . The proximal portion 124 defines the inlet 112 . As shown in the illustrated example, the proximal portion 124 has a larger cross-section than an adjacent portion of the passage 110 . Thus, the proximal portion 124 may be adapted to receive an end of a conduit. For example, a portion of flexible tubing may be received into the proximal portion 124 of the passage 110 . The conduit may be used to supply irrigation fluid from an irrigation fluid source. The conduit may be removably received into the proximal portion 124 such that a passage formed by the conduit communicates with the passage 110 of the irrigation portion 102 . Thus, in some instances, the conduit may form an interference fit to retain the tubing within the irrigation portion 102 . In other implementations, the conduit may be permanently attached within the proximal portion 124 , such as with the use of an adhesive, welding, interlocking features, or in any other desired way. In other instances, the proximal portion 124 may have a cross-sectional shape similar to identical to an adjacent portion of passage 110 . That is, in some instances, the cross-sectional shape of the proximal portion 124 is the same as or smoothly transitions into the cross-sectional shape of an adjacent portion of the passage 110 . In still other implementations, the cross-sectional shape of the proximal portion 124 may have a cross-sectional shape that is smaller than an adjacent portion of the passage 110 . Thus, as shown in FIG. 3 , the proximal portion 124 has a circular cross-sectional shape that defines a stepped increase in diameter over the adjacent portion of passage 110 . In other cases, the passage 110 may smoothly transition into a larger diametrical size of the proximal portion 124 . In other cases in which the cross-sectional shape is circular, the proximal portion 124 of the passage 110 may smoothly transition or have a constant diameter as an adjacent portion of the passage 110 . Alternately, the diameter of the proximal portion 124 may be a stepped or tapered decrease compared to an adjacent portion of the passage 110 . The passage 110 of the example irrigation portion 102 includes a first portion 126 and a second portion 128 . The first portion 126 has a longitudinal axis 130 , and the second portion 128 has a longitudinal axis 132 . An angle θ is defined by the longitudinal axes 130 , 132 . In some instances, the angle θ may be within the range of 0-90°. However, in other instances, the first portion 126 and the second portion 128 may be coaxial. In the example shown, the first portion 126 includes an outlet 134 . A plug 136 is disposed in the outlet 134 to prevent passage of fluid therethrough. The irrigation portion 102 is operable to direct irrigation fluid from a conduit coupled at the proximal end 114 through the passage 110 , and out through the irrigation needle 120 . The proximal end 114 may include one or more retaining features 115 . The retaining features 115 may cooperate, for example, with a lure lock provided on a length of tubing. Thus, the retaining features 115 may be utilized to couple the irrigation portion 102 to a length of flexible tubing or other type of conduit. Referring to FIG. 5 , the irrigation portion 102 defines a longitudinally extending slot 138 . As explained in more detail below, the slot 138 is configured to releasably receive a portion of the aspiration portion 104 . Further, as shown in FIG. 4 , the irrigation portion 102 may also include a tactile region 140 . The tactile region 140 may enhance gripping of a user. In some instances, the tactile region 140 may cover a portion of an outer surface 139 of the irrigation portion 102 . However, in some instances, more than one tactile region 140 may be used. In other implementations, the tactile region 140 may be eliminated. FIGS. 6-7 show an example aspiration portion 104 . Referring to FIG. 6 , the aspiration portion 104 includes a body 141 , a passage 142 extending through the body 141 from a proximal end 144 to a distal end 146 . The aspiration portion 104 also includes a receptacle 148 . The receptacle 148 is adapted to receive the irrigation portion 102 . When the irrigation portion 102 is received in the receptacle 148 , an outer surface 150 of the irrigation portion 102 cooperates with an inner surface 152 of the receptacle to form a seal. The seal is operable to prevent or substantially prevent fluid, such as irrigation fluid, from passing through the receptacle between the inner surface 152 and the outer surface 150 towards the proximal end 144 of the aspiration portion 104 . As a result, irrigation fluid is prevented or substantially prevented from leaking out of the I/A hand piece 100 . Thus, the seal allows the user to maintain a clean and dry gripping surface of the I/A hand piece 100 as well as preventing irrigation fluid from being uncontrollably released elsewhere in the environment. Materials used to form the outer surface 150 and the inner surface 152 may be selected such that one of the materials is more malleable or pliable relative to the other. Thus, the materials may be selected such that one of materials forming the inner surface 152 or a portion thereof or the material forming the outer surface 150 or a portion thereof conforms to the other material. For example, one of the materials may be harder than the other material. Further, deformation of one of the materials relative may be an elastic deformation. In other instances, the deformation may be a plastic deformation. Thus, the materials may be selected such that compliance of one material relative to the other material forms a fluid-tight or substantially fluid-tight seal. A portion of the distal end 146 may have a retaining feature 154 to retain the irrigation sleeve 106 . For example, in some instances, the retaining feature 154 may be a threaded surface configured to cooperate with a corresponding interior threaded surface 156 of the irrigation sleeve 106 (as shown in FIG. 8 ). Thus, the irrigation sleeve 106 may be removably secured to the distal end 146 of the aspiration portion 104 . However, other retaining features may be used to retain the irrigation sleeve 106 onto the aspiration portion 104 . For example, in some instances, an annular lip formed on the distal end 146 of the aspiration portion 104 may cooperate with a lip or other feature formed on the irrigation sleeve 106 to removably retain the irrigation sleeve 106 on the aspiration portion 104 . However, the disclosure is not so limited. Rather, any other suitable retaining feature may be used to removably retain the irrigation sleeve 106 . The irrigation sleeve 106 may be coupled to the distal end 146 of the aspiration portion 104 when either combined with or separated from the irrigation portion 102 . The proximal end 144 may be adapted to retain a conduit thereon. For example, a conduit, such as a length of flexible tubing, may be received onto an outer surface 158 of the proximal end 144 . Further, in some instances, the proximal end 144 may have a tapered shape. The conduit may be retained by an interference fit between the proximal end 144 and the conduit. In other implementations, the proximal end 144 may include retaining features to couple a conduit to the aspiration portion 104 . In some instances, the retaining features include, for example, one or more raised lips, a textured surface, or any other desired feature. The proximal end 144 defines an outlet 160 . In some instances, the irrigation portion 102 and/or the aspiration portion 104 may be coupled to a surgical console. For example, the irrigation portion 102 and/or aspiration portion 104 may be coupled to a surgical console via a conduit (e.g., flexible tubing). The passage 142 also includes a distal portion 162 . In some instances, the distal portion 162 has a reduced cross-section in relation to an adjacent portion of the passage 142 . For example, in some instances, the passage 142 may have a circular cross-section. Thus, the distal portion 162 may have a diametrical size smaller than an adjacent portion of the passage 142 . In some instances, the size of the distal portion 162 may change gradually. For example, in some instances, the passage 142 may taper to the distal portion 162 . In other instances, distal portion 162 may have an abrupt change in cross-section relative to an adjacent portion of passage 142 . For example, as shown in FIG. 6 , the distal portion 162 may have a stepped change in cross section. Further, in some implementations, the passage 142 may have a constant cross-section along a length of the aspiration portion 104 . In other implementations, the passage 142 may have a cross-section that varies along the length of the aspiration portion 104 . For example, in some instance, one or more portions of the passage 142 may have a tapered cross-section. In other instances, one or more portions of the passage 142 may have a stepped changed in cross-section. However, the passage 142 may have any desired cross-sectional provide along the length of the aspiration portion 104 . In other instances, a size of the distal portion 162 may be continuous with an adjacent portion of the passage 142 . In still other instances, a size of the distal portion 162 may be a smaller an adjacent portion of the passage 142 . In some instances, the shape of the passage 142 may have a circular cross-section. In other instances, the passage 142 may have other cross-sectional shapes, such as, for example, oval, rectangular, square, pyramidal, or any other desired shape. An aspiration needle 164 is received into the distal portion 162 . In some instances, the aspiration needle 164 may form an interference fit with the distal portion 162 . In other instances, an adhesive may be used to attach the aspiration needle 164 within the distal portion 162 . Further, in still other instances, the body 141 may be formed around the aspiration needle 164 . That is, the aspiration needle 164 may be in place at the time of forming of the body 141 . For example, in some instances, the body 141 may be formed by an injection molding operation. Thus, the aspiration needle 164 may be positioned at a desired location in or relative to the injection mold at the time the body 141 is molded. In other instances, the aspiration needle 164 may be coupled to the body 141 after formation of the body 141 . The aspiration portion 104 may also include a tactile region 166 . The tactile region 166 may enhance gripping of a user. In some instances, the tactile region 140 may cover a portion of an outer surface 168 of the irrigation portion 104 . However, in some instances, more than one tactile region 166 may be used. In other implementations, the tactile region 166 may be eliminated. FIG. 7 is a cross-sectional view of the aspiration portion 104 taken along line A-A. As shown, the body 141 includes a profile 170 along at least a portion of its length that is configured to be releasably received into the slot 138 formed in the irrigation portion 102 . The profile 170 and slot 138 may define a form or force closure mechanism. For example, in some instances, the profile 170 and slot 138 may have a snap fit to secure the irrigation portion 102 and the aspiration portion 104 together. Thus, the irrigation portion 102 and the aspiration portion 104 may be combined by inserting the irrigation needle 120 and the distal end 118 of the irrigation portion 102 into the receptacle 148 of the aspiration portion 104 and pressing the irrigation portion 102 and the aspiration portion 104 such that the profile 170 of the aspiration portion 104 is received into the slot 138 of the irrigation portion 102 . Referring to FIG. 20 , the hand piece 100 may also include retaining features to maintain the irrigation portion 102 and the aspiration portion 104 in the assembled configuration. For example, in the illustrated example, a protrusion 2000 formed on the body 108 of the irrigation portion 102 is received into a recess 2002 defined by the body 141 of the aspiration portion 104 . Similarly, a protrusion 2004 formed on the body 141 of the aspiration portion 104 is received into a recess 2006 defined by the body 139 of the irrigation portion 102 . The protrusions 2000 , 2004 and mating recesses 2002 , 2006 , respectively, provide for mechanical interlocking between the irrigation portion 102 and aspiration portion 104 in the assembled configuration. The protrusions 2000 , 2004 and recesses 2002 , 2006 are operable to couple the irrigation portion 102 and the aspiration portion 104 to each other. The protrusions 2000 , 2004 may be retained within their corresponding recesses 2002 , 2006 by, for example, a snap fit. For example, once the irrigation portion 102 is received within the receptacle 148 , joining forces may be applied to the irrigation portion 102 and aspiration portion 104 to force the protrusions 2000 , 2004 into their respective recesses 2002 , 2006 . Separations forces may be applied to irrigation portion 102 and aspiration portions 104 to remove the protrusions 2000 , 2004 from their respective recesses 2002 , 2006 . While example retaining features are described above, other retaining features may also be used. For example, different interlocking features adapted to releasably secure the irrigation portion 102 and aspiration portion 104 may be implemented. FIGS. 8-9 show an example irrigation sleeve 106 . As explained above, in some implementations, the irrigation sleeve 106 includes a threaded surface 156 and defines an interior 172 . Although the irrigation sleeve 106 may include a threaded surface 156 in some implementations, in other implementations another type of retaining feature may be used. For example, the irrigation sleeve 106 may include any type of retaining operable to couple the irrigation sleeve 106 to the aspiration portion 104 . Particularly, the irrigation sleeve 106 may include any suitable retaining feature operable to cooperate with the retaining feature 154 of the aspiration portion 104 . The irrigation sleeve 106 may also includes ports 174 . The ports 174 may be oriented 180° offset from each other about longitudinal axis 176 . Although two ports 174 are shown, in other implementations, the irrigation sleeve 106 may include fewer ports, additional ports, or no ports. The irrigation sleeve 106 also includes an outlet 178 . The aspiration needle 164 may extend through the outlet 178 . Referring to FIG. 2 , in operation, in the assembled configuration, irrigation fluid passes from the inlet 112 , through passage 110 , out through the irrigation needle 120 , into the irrigation sleeve 106 , and out through openings 176 . Irrigation fluid may also exit through the outlet 178 between the irrigation sleeve 106 and the aspiration needle 164 . The combined irrigation portion 102 and aspiration portion 104 define a hand piece that may be used by a user with a single hand, thereby freeing up the user's other hand for other purposes. When separated (“separated configuration”), the irrigation portion 102 and the aspiration portion 104 may be utilized separately, for example, for use in a bimanual surgical procedure. Generally, in the separated configuration, the irrigation sleeve 106 is removed prior to use of the aspiration portion 104 . However, in other instances, the irrigation sleeve 106 may remain attached during use. FIGS. 10-21 illustrate another example I/A hand piece 1000 . FIG. 10 is a cross-sectional view of the example hand piece 1000 in an assembled configuration. The hand piece 1000 includes an irrigation portion 1002 , an aspiration portion 1004 , and an irrigation sleeve 1006 . FIGS. 11-13 show cross-sectional views of the irrigation portion 1002 , the aspiration portion 1004 , and the irrigation sleeve 1006 in a separated configuration. Referring to FIGS. 11-13 , the irrigation portion 1002 includes a body 1008 and a passage 1010 . The passage 1010 includes an inlet 112 and an outlet 1016 . The passage 1010 may extend from a proximal end 1014 to a distal end 1018 . A body 1008 may define a receptacle 1015 . The receptacle 1015 is configured to receive the aspiration portion 1004 . As shown in FIG. 12 , the outlet 1016 forms an annular ring around the receptacle. FIG. 13 is a cross-sectional view at section B-B. FIG. 13 shows that the body 1008 may have a curved cross-sectional shape. In the illustrated example, the cross-sectional shape of the body 1008 has an arc-shape defining a recess 1020 . The arc-shape is configured to receive the aspiration portion 1004 , as shown, for example, in FIG. 19 . Thus, in some instances, the aspiration portion 1004 nests within the recess 1020 of the irrigation portion 1002 . However, the irrigation portion 1002 may have other cross-sectional shapes. For example, the irrigation portion 1002 may have any shape configured to receive the aspiration portion 1004 . Further, the passage 1010 may also have a curved or arc shape. For example, the passage 1010 may have a shape that is defined by wall 1032 of the body. In other instances, though, the cross-sectional shape of the passage 1010 may define other shapes. For example, the passage 1010 may have a circular, rectangular, elliptical, pyramidal, or any other desired cross-sectional shape. Still further, a cross-sectional size and shape of the passage 1010 may also vary along a length of the irrigation portion 1002 . The proximal end 1014 may be angled relative to an adjacent portion of the body 1008 . For example, an angle β may be defined between a longitudinal axis 1034 of the proximal end 1014 and a longitudinal axis 1036 . In some instances, the angle β may be in the range of 90-180°. In other instances, the angle β may be 180°. That is, the longitudinal axes 1034 , 1036 may be aligned. Referring to FIG. 12 , the proximal end 1014 may include one or more retaining features 1040 . The retaining features 1040 may be similar to the retaining features 115 , described above. Thus, retaining features 1040 may be operable to couple a conduit to the irrigation portion 1002 . For example, the retaining features 1040 may cooperate with a lure lock connector attached to a piece of tubing, such as flexible tubing. In other instances, a conduit may be retained onto the proximal end 1014 , for example, via an interference fit, an adhesive, gripping ribs, or in any other suitable manner. The distal end 1018 of the body 1008 may have a retaining feature 1042 . The retaining feature 1042 is operable to retain the irrigation sleeve 1006 . For example, in some instances, the retaining feature 1042 may be a threaded surface configured to cooperate with a corresponding interior threaded surface 1044 of the irrigation sleeve 1006 (as shown in FIG. 17 ). Thus, the irrigation sleeve 1006 may be removably secured to the distal end 1018 of the irrigation portion 1002 . However, other retaining features may be used to retain the irrigation sleeve 1006 onto the irrigation portion 1002 . For example, in some instances, an annular lip formed on the distal end 1018 of the irrigation portion 1002 may cooperate with a lip or other feature formed on the irrigation sleeve 1006 to removably retain the irrigation sleeve 1006 on the irrigation portion 1002 . However, the disclosure is not so limited. Rather, any other suitable retaining feature may be used to removably retain the irrigation sleeve 1006 . The irrigation sleeve 1006 may be coupled to the distal end 1018 of the irrigation portion 1002 when either combined with or separated from the aspiration portion 1004 . FIG. 14 shows another example implementation in which the body 1008 of the irrigation portion 1002 includes a stiffening feature 1005 . In some instances, the stiffening feature 1005 may be formed integrally with the body 1008 . In other instances, the stiffening feature 1005 may be separate from and coupled to the body 1008 . For example, the stiffening feature 1005 may be coupled to the body 1008 such as with an adhesive, interference fit, welding, cooperating interlocking features, or in any other desired manner. The irrigation sleeve 1006 is received over the stiffening feature 1005 . The irrigation sleeve 1006 and the irrigation portion 1002 may be coupled together in a manner similar to those described above. For example, the irrigation portion 1002 may include a retaining feature 1042 that is operable to retain the irrigation sleeve 1006 . In some instances, the retaining feature 1042 may be a threaded surface configured to cooperate with a corresponding interior threaded surface 1044 of the irrigation sleeve 1006 (as shown in FIG. 17 ). However, as explained above, cooperating threaded surfaces are merely an example, and, therefore, other retaining features 1042 may be used to removably secure the irrigation sleeve 1006 to the irrigation portion 1002 . In the example shown in FIG. 14 , the stiffening feature 1005 includes a plurality of freely-extending fingers 1007 . The fingers 1007 may be coupled to the distal end 1018 of the body 1008 . The fingers 1007 configured to flex and are, hence, compliant to a force applied thereto. The force at which the fingers 1007 may be made to flex may be adjusted to any desired force, and the rate or amount of flex at a desired force may also be adjusted to a desired level. The fingers 1007 are received into the interior 1062 of the irrigation sleeve 1006 . The fingers 1007 may be shaped to conform to the shape of the irrigation sleeve 1006 . For example, the fingers 1007 may have a bent shape configured to correspond to a proximal flared portion of the irrigation sleeve 1006 and a distal elongated portion thereof. The fingers 1007 and, therefore, the stiffening feature 1005 provide increased stiffness and rigidity to the irrigation sleeve 1006 . This increased stiffness and rigidity may prevent or reduce flexing or collapse of the irrigation sleeve 1006 , for example, when the aspiration portion 1004 is detached from the irrigation portion 1002 . As a result, the increased stiffness and rigidity provided by the stiffening feature 1005 to the irrigation sleeve 1006 provides improved performance of the irrigation portion 1002 and irrigation sleeve 1006 when used without the aspiration portion 1004 . For example, during a surgical procedure in which the irrigation sleeve 1006 extends into a patient's eye, the stiffening feature 1005 may prevent collapse, twisting, or bending of the irrigation sleeve 1006 upon removal of aspiration portion 1004 or when used without the aspiration portion 1004 . FIGS. 15-16 show the aspiration portion 1004 . The aspiration portion 1004 includes a body 1046 , a proximal end 1048 , a distal end 1050 , a passage 1052 , and an aspiration needle 1054 . The passage 1052 may also include a distal portion 1056 that may be similar to the distal portion 162 , described above. The passage 1052 defines an outlet 1058 at the proximal end 1048 . The proximal end 1048 may be adapted to retain a conduit thereon. For example, a conduit, such as a length of flexible tubing, may be received onto an outer surface 1070 of the proximal end 1048 . Further, in some instances, the proximal end 1048 may have a tapered shape. The conduit may be retained by an interference fit between the proximal end 1058 and the conduit. In other implementations, the proximal end 1048 may include retaining features to couple a conduit to the aspiration portion 1004 . In some instances, the retaining features include, for example, one or more raised lips, a textured surface, or any other desired feature. The proximal end 1048 defines an outlet 1058 . The aspiration needle 1054 is received into the distal portion 1056 . In some instances, the aspiration needle 1054 may form an interference fit with the distal portion 1056 . In other instances, an adhesive may be used to attach the aspiration needle 1054 within the distal portion 1056 . Further, in still other instances, the body 1046 may be formed around the aspiration needle 1054 . That is, the aspiration needle 1054 may be in place at the time of forming of the body 1046 . For example, in some instances, the body 1046 may be formed by an injection molding operation. Thus, the aspiration needle 1054 may be positioned at a desired location in or relative to the injection mold at the time the body 1046 is molded. In other instances, the aspiration needle 1054 may be coupled to the body 1046 after formation of the body 1046 . Further, in some implementations, the passage 1052 may have a constant cross-section along a length of the aspiration portion 1004 . FIG. 16 is a cross-sectional view of the aspiration portion 1004 taken along line C-C. As shown in FIG. 16 , the passage 1052 may have a circular cross-section. The circular cross-section may be constant along the length of the passage 1052 . In other implementations, the passage 1052 may have a cross-section that varies along the length of the aspiration portion 1004 . For example, in some instance, one or more portions of the passage 1052 may have a tapered cross-section. In other instances, one or more portions of the passage 1052 may have a stepped changed in cross-section. However, the passage 1052 may have any desired cross-sectional provide along the length of the aspiration portion 1004 . Further, a cross-sectional size and shape of the passage 1052 may vary along the length of the aspiration portion 1004 . FIG. 17 shows a cross-sectional view of the irrigation sleeve 1006 . The irrigation sleeve 1006 includes an outlet 1060 , an interior 1062 , and the threaded surface 1044 . The aspiration needle 1054 may extend through the outlet 1060 . Also, although the irrigation sleeve 1006 may include a threaded surface 1044 in some implementations, in other implementations another type of retaining feature may be used. For example, the irrigation sleeve 1006 may include any type of retaining operable to couple the irrigation sleeve 1006 to the aspiration portion 1004 . Particularly, the irrigation sleeve 1006 may include any suitable retaining feature operable to cooperate with the retaining feature 1042 of the aspiration portion 1004 . Referring to FIG. 18 , the irrigation sleeve 1006 may also includes ports 1064 . The ports 1064 may be oriented 180° offset from each other about longitudinal axis 1066 . Although two ports 1064 are shown, in other implementations, the irrigation sleeve 1006 may include fewer ports, additional ports, or no ports. FIG. 19 shows another example irrigation sleeve 1006 that includes a stiffening feature 1009 . The stiffening feature 1009 may be in the form of a tubular elongated member. In some instances the stiffening feature 1009 may be cylindrical in shape. In other instances, the stiffening feature 1009 may be tapered. In general, the stiffening feature 1009 may have a shape that conforms to a portion of the irrigation sleeve 1006 . Further, the stiffening feature 1009 may be formed from a material having any desired stiffness. For example, in some instances, the material forming the stiffening feature 1009 may have a stiffness equal to the stiffness of the material forming the irrigation sleeve 1006 . In other instances, the stiffness of the material forming the stiffening feature 1009 may be less than or greater than the material forming the irrigation sleeve 1006 . The stiffening feature 1009 may be received into an elongated portion 1011 . In some instances, an outer diameter of the stiffening feature 1009 may be larger than an inner diameter of the elongated portion 1011 . Thus, the stiffening feature 1009 may form an interference fit with the elongated portion 1011 . In other instance, the stiffening feature may be adhered to the elongated portion 1011 . For example, an adhesive may be used to attach the stiffening feature to the elongated portion 1011 . In still other implementations, the stiffening feature 1009 may be embedded within the elongated portion 1011 . In the implementation shown in FIG. 19 , the stiffening feature 1009 is received into the elongated portion 1011 , and an end 1013 abuts a shoulder 1015 formed in the elongated portion 1011 . Referring again to FIG. 10 , the hand piece 1000 is shown in the assembled configuration. In the assembled configuration, the distal end 1050 of the aspiration portion 1004 is received into the receptacle 1015 of the irrigation portion 1002 . The aspiration portion 1004 may be retained within the receptacle 1015 , for example, by a snap fit, friction, or in any other suitable way. Thus, the aspiration portion 1004 and the irrigation portion 1002 may be releasably coupled to each other. In the assembled configuration, the aspiration needle 1054 extends through the outlet 1060 of the irrigation sleeve 1006 . FIG. 20 is a cross-sectional view of the hand piece 1000 taken along line D-D in FIG. 10 . As shown, the passage 1010 of the irrigation portion 1002 has a cross-section in the form of a ring. The passage 1052 extends through the receptacle 1015 , which is encircled by the passage 1010 . FIG. 21 shows a cross-sectional view of the hand piece 1000 taken along line E-E in FIG. 10 . FIG. 21 illustrates that, in some implementations, the body 1046 of the aspiration portion 1004 may next within the recess 1020 defined by the body 1008 of the irrigation portion 1002 . In operation, irrigation fluid passes through the passage 1010 of the irrigation portion 1002 , out through the outlet 1016 , and into the interior 1062 of the irrigation sleeve 1006 . The irrigation sleeve 1006 and the irrigation portion 1002 form a seal. The seal may be a fluid-tight seal that is operable to prevent or substantially prevent passage of fluid between the irrigation sleeve 1006 and the irrigation portion 1002 . The irrigation fluid passes out of the irrigation sleeve 1006 through the one or more ports 1064 . Additionally, irrigation fluid may exit the irrigation sleeve 1006 through the outlet 1060 between the aspiration needle 1054 and the irrigation sleeve 1006 . As indicated above, the irrigation sleeve 1006 may not include ports 1064 . In such implementations, the irrigation fluid may exit the irrigation sleeve 1006 through the outlet 1060 . Material may be aspirated through the aspiration needle 1054 , through passage 1052 , and out through outlet 1058 of the aspiration portion 1004 . The aspirated material may continue through a conduit, such as flexible tubing, coupled to the aspiration portion 1004 . Thus, similar to the example shown in FIG. 1-9 , the hand piece 1000 may be used in the assembled configuration such that aspiration and irrigation functionality is provided in a single component that may be grasped in a single hand of the user. However, the hand piece 1000 may be separated into individual components, for example, for use in a bimanual surgical procedure. Further, similar to the hand piece 100 , the irrigation portion 1002 and the aspiration portion 1004 may be repeatedly coupled and decoupled. For example, the irrigation portion 1002 and the aspiration portion 1004 may be coupled and decoupled numerous times during a surgical procedure, depending upon the needs or desires of the user. Hand pieces 100 and 1000 provide many advantages. For example, hand pieces 100 , 1000 provide a user with the ability to separate or combine aspiration and irrigation functionality. The user advantageously has the choice and can freely alternate hand pieces 100 , 1000 between the assembled configuration and the separated configuration as desired. For example, the surgeon can place hand pieces 100 , 1000 into the assembled configuration in order to have a free or unoccupied hand while performing a procedure. Alternately, the surgeon can place the hand pieces 100 , 1000 into the separated configuration in order to independently place the irrigation and aspiration portions at separate locations. Further, because the irrigation portion and aspiration portion are separable, separate devices for aspiration and irrigation are not required. Thus, the hand pieces 100 , 1000 provide many advantageous to a user. While the present disclosure is illustrated by the various implementations described herein, and while the various implementations are described in detail, the scope of the present disclosure is not intended to be limited or restricted to such detail. Rather, additional advantages and modifications will readily appear to those skilled in the art. Therefore, the present disclosure in its broader aspects is not limited to the specific details, representative apparatus, and illustrative examples shown and described herein. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general or inventive concept. Thus, other implementations are within the scope of the following claims.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (299)

    Publication numberPublication dateAssigneeTitle
    US-4717387-AJanuary 05, 1988Sumitomo Electric Industries Ltd.Catheter
    US-4487600-ADecember 11, 1984Brownlie Alan W, Spier Roger DAdjustable suction device for medical use
    US-5938244-AAugust 17, 1999Colder Products CompanyApparatus for forming fluid tight seal between coupling body and insert
    US-5037391-AAugust 06, 1991Pilot Cardiovascular Systems, Inc.Steerable angioplasty device
    US-2014163455-A1June 12, 2014Alcon Research, Ltd.Phacoemulsification hand piece with integrated aspiration and irrigation pump
    US-5873851-AFebruary 23, 1999Microsurgical Technology, Inc.Ophthalmic irrigator-aspirator having a flexible outer cannula
    JP-4429164-B2March 10, 2010千寿製薬株式会社, 眞人 岸本眼内手術用減圧補償器具、これを備えた眼内手術器具、及び眼内手術方法
    US-2005256462-A1November 17, 2005Underwood John RNozzle
    US-2006048849-A1March 09, 2006Colder Products CompanyPenetrable membrane structure and coupler incorporating the same in a fluid path
    US-5413556-AMay 09, 1995Inventive Systems, Inc.Phacoemulsification handpiece
    US-7546857-B2June 16, 2009Colder Products CompanyConnect/disconnect coupling for a container
    US-3949748-AApril 13, 1976Oscar MalminInjection syringe having aspirating and metering capabilities
    US-5421955-AJune 06, 1995Advanced Cardiovascular Systems, Inc.Expandable stents and method for making same
    US-2006047241-A1March 02, 2006Mikhail BoukhnySurgical apparatus
    US-3109426-ANovember 05, 1963Clayton T Noonan, Dale C P SalisburyCombined aspirator and irrigation instrument
    US-5353836-AOctober 11, 1994Colder Products CompanyDispensing valve
    US-6010054-AJanuary 04, 2000Imagyn Medical TechnologiesLinear stapling instrument with improved staple cartridge
    US-5718677-AFebruary 17, 1998Alcon Laboratories, Inc.Soft aspriation tip
    US-2010019487-A1January 28, 2010Decler Charles Peter, Jeremy NicholsCoupling with Low Friction Material
    US-5938678-AAugust 17, 1999Endius IncorporatedSurgical instrument
    US-4897079-AJanuary 30, 1990Allergan, Inc.Polymeric sleeve for surgical instruments
    US-5354265-AOctober 11, 1994Mackool Richard JFluid infusion sleeve
    US-5178605-AJanuary 12, 1993Alcon Surgical, Inc.Coaxial flow irrigating and aspirating ultrasonic handpiece
    US-4934655-AJune 19, 1990Colder Products CompanyShutoff valve assembly
    US-4204328-AMay 27, 1980Kutner Barry SVariable diameter aspirating tip
    US-2005273063-A1December 08, 2005Thomas Hoell, Guido FehlingSurgical suction instrument
    US-3848748-ANovember 19, 1974Olivetti & Co SpaSupport of bent stiff wire for suspended files or the like, removably insertable into a furniture drawer
    US-5292310-AMarch 08, 1994Inbae YoonSafety needle
    WO-9210139-A1June 25, 1992Kelman Charles DElement de raclage de tissus a usage medical
    US-5451229-ASeptember 19, 1995Hans Geuder GmbhCannula for an eye-surgery instrument
    US-5151084-ASeptember 29, 1992Fibra-Sonics, Inc.Ultrasonic needle with sleeve that includes a baffle
    US-5531744-AJuly 02, 1996Medical Scientific, Inc., Ethicon Endo-SurgeryAlternative current pathways for bipolar surgical cutting tool
    US-5911403-AJune 15, 1999Colder Products CompanyValve and method for assembling the same
    US-4928859-AMay 29, 1990Krahn Roy J, Blenkush Brian JQuick disconnect for aerosol spray can
    US-2013207380-A1August 15, 2013Colder Products CompanyAseptic Coupling Devices
    US-6165168-ADecember 26, 2000Russo; Ronald D.Closed system adapter for catheters
    WO-2007006466-A1January 18, 2007Demetrio RomeoDevice for the treatment of glaucoma
    US-4710180-ADecember 01, 1987Johnson Gerald WLipoject needle
    US-4553957-ANovember 19, 1985Alcon Laboratories, Inc.Irrigation/aspiration handpiece
    US-6423074-B1July 23, 2002Allergan Sales, Inc.Flexible irrigation/aspiration tip assembly for providing irrigation to an eye capsule and for aspirating fluid from the eye capsule
    US-6231089-B1May 15, 2001Colder Products CompanyTwo piece molded female coupling
    EP-0651661-B1June 28, 2000C.R. Bard, Inc.Improved composite irrigation and suction probe
    US-5899914-AMay 04, 1999Endius IncorporatedSurgical instrument
    US-6299591-B1October 09, 2001Surgical Design CorporationPhacoemulsification handpiece, sleeve, and tip
    US-5123906-AJune 23, 1992Kelman Charles DSurgical toroidal snare
    US-5242449-ASeptember 07, 1993Allergan, Inc.Ophthalmic instrument
    US-7014629-B2March 21, 2006Alcon, IncTapered infusion sleeve portal
    US-2006212038-A1September 21, 2006Alcon, Inc.Liquefaction handpiece tip
    US-2005277898-A1December 15, 2005Dimalanta Ramon C, Ghannoum Ziad R, Madden Sean C, Glenn SussmanHandpiece tip
    US-6068641-AMay 30, 2000Linvatec CorporationIrrigated burr
    US-6234993-B1May 22, 2001Microsurgical Technology, Inc.Low profile phaco handpiece
    US-6340355-B1January 22, 2002Graham David BarrettIntraocular irrigation/aspiration device
    US-3871099-AMarch 18, 1975Kg CompanyMethod for cleaning cavities with a combined fluid delivering and aspirating instrument
    US-5131382-AJuly 21, 1992Meyer William FEndoscopic percutaneous discectomy device
    US-6013049-AJanuary 11, 2000Allergan Sales, Inc.Controlled outflow sleeve
    US-4903995-AFebruary 27, 1990Colder Products CompanySelf-tightening soft tubing fitting and method of use
    WO-0009925-A1February 24, 2000Colder Products CompanyEnsemble raccord et procede d'etancheite entre un raccord et une structure de paroi
    US-5441496-AAugust 15, 1995Infinitech, Inc.Laser delivery system with soft tip
    US-6645218-B1November 11, 2003Endius IncorporatedSurgical instrument
    US-5290892-AMarch 01, 1994Nestle S.A.Flexible intraocular lenses made from high refractive index polymers
    US-6183433-B1February 06, 2001Xomed Surgical Products, Inc.Surgical suction cutting instrument with internal irrigation
    US-6398759-B1June 04, 2002Alcon Manufacturing, Ltd.Liquefracture handpiece tip
    US-6592541-B1July 15, 2003Badrudin KurwaOphthalmological surgical instrument, device and method of use
    US-5522826-AJune 04, 1996Daily; Pat O.Thromboendarterectomy dissector and suction instrument
    US-5836926-ANovember 17, 1998Schneider (Usa) IncIntravascular catheter
    US-3745645-AJuly 17, 1973Voith Gmbh J MMethod of manufacture and operation of ribbed member for treatment of fibrous suspensions
    US-4573979-AMarch 04, 1986Innovative Surgical Products, Inc.Irrigation/aspiration tip
    US-5217465-AJune 08, 1993Alcon Surgical, Inc.Flexible and steerable aspiration tip for microsurgery
    DE-19700809-C2May 08, 2003Geuder AgAugenchirurgisches Instrument zum Zertrümmern von Augenlinsen mittels Ultraschall und zum Absaugen von Linsentrümmern
    US-5354291-AOctober 11, 1994Symbiosis CorporationProbe for endoscopic suction-irrigation instruments having a proximal port for receiving an additional probe therethrough
    US-7094229-B2August 22, 2006Alcon, Inc.Surgical method and apparatus
    US-6024124-AFebruary 15, 2000Colder Products CompanyLow spill high flow quick coupling valve assembly
    US-5403901-AApril 04, 1995Nestle S.A.Flexible, high refractive index polymers
    US-4461281-AJuly 24, 1984Carson Robert WArthroscopic surgical apparatus and method
    US-5749893-AMay 12, 1998United States Surgical CorporationSurgical instrument having an articulated jaw structure and a detachable knife
    US-4436125-AMarch 13, 1984Colder Products CompanyQuick connect coupling
    US-5364405-ANovember 15, 1994Allergan, Inc.Ophthalmic instrument with curved suction conduit and internal ultrasound needle
    US-2007100277-A1May 03, 2007Shippert Ronald DTissue transplantation method and apparatus
    US-5746713-AMay 05, 1998Hood; Larry, Lemus; Tony V.Phacoemulsification needle
    US-2007179512-A1August 02, 2007Olsen Timothy W, Loftness Paul E, Erdman Arthur GSurgical support structure
    US-6007513-ADecember 28, 1999Aziz Yehia AnisRemoval of tissue
    US-5702270-ADecember 30, 1997Alcon Laboratories, Inc.Surgical handpiece holder
    US-3624907-ADecember 07, 1971Michele Brass, Ennio BrassDevices for the rational washing of tooth root canals with simultaneous suction of the outflowing liquid and related improved devices
    US-2011144567-A1June 16, 2011Alcon Research, Ltd.Phacoemulsification Hand Piece With Integrated Aspiration Pump and Cartridge
    WO-2006018579-A2February 23, 2006Didier DucournauImproved surgical bimanual phacoemulsificator devices
    US-3807048-AApril 30, 1974O MalminCombined irrigator, injector and evacuator
    US-8491016-B2July 23, 2013Colder Products CompanyAseptic coupling devices
    US-6241700-B1June 05, 2001Alcon Laboratories, Inc.Surgical handpiece
    EP-0997108-A2May 03, 2000Boston Scientific LimitedMultifunktionales Gerät für Chirurgie
    US-2013165850-A1June 27, 2013Alcon Research, Ltd.Combined coaxial and bimanual irrigation/aspiration apparatus
    US-D602128-SOctober 13, 2009Colder Products CompanyCoupling insert
    US-5033777-AJuly 23, 1991Colder Products CompanyMale insert member having integrally molded part line free seal
    US-5785647-AJuly 28, 1998United States Surgical CorporationSurgical instruments useful for spinal surgery
    US-5454827-AOctober 03, 1995Aust; Gilbert M., Taylor; Timothy E.Surgical instrument
    WO-2010056448-A1May 20, 2010Alcon Research, Ltd.Distal plastic end infusion/aspiration tip
    US-5941887-AAugust 24, 1999Bausch & Lomb Surgical, Inc.Sleeve for a surgical instrument
    US-5178303-AJanuary 12, 1993Colder Products Company, Inc.Dispensing valve apparatus
    US-2007260173-A1November 08, 2007Alcon, Inc.Irrigation/aspiration tip
    US-6554842-B2April 29, 2003Radius Medical Technologies, Inc.Small diameter snare
    US-6428501-B1August 06, 2002K2 Limited Partnership U/A/DSurgical instrument sleeve
    US-6048339-AApril 11, 2000Endius IncorporatedFlexible surgical instruments with suction
    US-6623477-B1September 23, 2003Asclepion-Meditec AgMedical instrument for phacoemulsification
    US-4998916-AMarch 12, 1991Hammerslag Julius G, Hammerslag Gary RSteerable medical device
    US-6179807-B1January 30, 2001Stryker CorporationSurgical/medical irrigator with removable tip and integrated suction conduit
    US-4014333-AMarch 29, 1977Mcintyre David JInstrument for aspirating and irrigating during ophthalmic surgery
    US-8568396-B2October 29, 2013Alcon Research, Ltd.Flooded liquefaction hand piece engine
    US-7954374-B2June 07, 2011Colder Products CompanyEstimating the consumption of a fluid by sensing displacement of a coupling device
    EP-1852095-B1December 23, 2009Alcon, Inc.Pointe d'irrigation/aspiration
    US-5453087-ASeptember 26, 1995Malinowski; IgorHandpiece for cataract surgery
    US-5108368-AApril 28, 1992Pilot Cardiovascular System, Inc.Steerable medical device
    US-4813926-AMarch 21, 1989Sherwood Medical CompanyMedical suction device with air vent and fixed restrictor
    US-3745655-AJuly 17, 1973O MalminEndodontic irrigating instrument
    US-2004030281-A1February 12, 2004Breg, Inc.Integrated infusion and aspiration system and method
    CN-102245222-BMay 07, 2014博士伦公司Flow control system based on leakage
    KR-20040014526-AFebruary 14, 2004콜더 프로덕츠 컴패니유체 분배를 제어하기 위한 커넥터 장치 및 이를 연결하는방법
    US-RE39152-EJune 27, 2006Endius IncorporatedSurgical instrument
    US-6852093-B1February 08, 2005Alcon, Inc.Surgical method and apparatus
    US-2012035532-A1February 09, 2012Cook IncorporatedAspirating and injecting device
    US-5830192-ANovember 03, 1998Staar Surgical Company, Inc.Irrigation sleeve for phacoemulsification apparatus
    US-D357307-SApril 11, 1995Colder Products CompanyQuick connection coupling valve assembly
    US-6656195-B2December 02, 2003Medtronic Xomed, Inc.Flexible inner tubular members and rotary tissue cutting instruments having flexible inner tubular members
    US-4983160-AJanuary 08, 1991Nestle S.A.Rigid transparent fluid conduit for ophthalmic surgical irrigation
    US-6962275-B2November 08, 2005Colder Products CompanyFluid coupling with disposable connector body
    US-5851212-ADecember 22, 1998Endius IncorporatedSurgical instrument
    US-2003199883-A1October 23, 2003Microsurgical Technology, Inc.Aspirator tip
    US-2012143125-A1June 07, 2012Alcon Research, Ltd.Combined Coaxial and Bimanual Irrigation/Aspiration Apparatus
    US-6626419-B2September 30, 2003Colder Products CompanyFluid coupling valve assembly
    US-5372587-ADecember 13, 1994Pilot Cariovascular Systems, Inc.Steerable medical device
    US-7066923-B2June 27, 2006Alcon, Inc.Surgical method and apparatus using dual irrigation paths
    US-4386927-AJune 07, 1983Ocular AssociatesDevice to be utilized in extracapsular cataract surgery
    US-6053907-AApril 25, 2000Endius IncorporatedSurgical instruments with flexible drive shaft
    US-5645530-AJuly 08, 1997Alcon Laboratories, Inc.Phacoemulsification sleeve
    WO-2007011302-A1January 25, 2007Phacotreat AbDispositif chirurgical d’élimination de tissus oculaires indésirables
    WO-0192769-A2December 06, 2001Colder Products CompanyApparatus and method for connecting flow conveyances
    US-2006036215-A1February 16, 2006Mikhail BoukhnySurgical apparatus
    US-2007278786-A1December 06, 2007Mezhinsky Victor B, Kirchhevel G L, Zabilski Paul DFluid Coupling System
    US-5176126-AJanuary 05, 1993Kabushiki Kaisha Machida SeisakushoBending device
    US-4531943-AJuly 30, 1985Angiomedics CorporationCatheter with soft deformable tip
    US-2011137231-A1June 09, 2011Alcon Research, Ltd.Phacoemulsification Hand Piece With Integrated Aspiration Pump
    US-6491670-B1December 10, 2002Duke UniversityMiniaturized surgical instruments especially useful for the opthalmologic surgical procedures and methods of making the same
    US-6579270-B2June 17, 2003Alcon Manufacturing, Ltd.Liquefracture handpiece tip
    US-6916007-B2July 12, 2005Colder Products CompanyClosure valve apparatus for fluid dispensing
    US-4652255-AMarch 24, 1987Miguel MartinezIrrigating and aspirating handpiece for use in ophthalmic surgery
    US-5328456-AJuly 12, 1994Nidek Co., Ltd.Irrigation and aspiration apparatus
    US-2014276377-A1September 18, 2014Abbott Medical Optics Inc.Irrigation and aspiration sleeve for phacoemulsification
    US-4500118-AFebruary 19, 1985Colder Products CompanyFitting apparatus for soft tubing
    US-2009188575-A1July 30, 2009Colder Products CompanyQuick Connect/Disconnect Coupling Assemblies
    US-6902144-B2June 07, 2005Colder Products CompanyConnector apparatus with seal protector and method of the same
    US-3749090-AJuly 31, 1973Stewart ResearchCombination aspirator and fluid delivering surgical instrument
    US-6132426-AOctober 17, 2000Daig CorporationTemperature and current limited ablation catheter
    US-D649939-SDecember 06, 2011Colder Products CompanyFluid and electrical coupling
    US-2004092921-A1May 13, 2004Kadziauskas Kenneth E., Rockley Paul W., Mark SchaferSystem and method for pulsed ultrasonic power delivery employing cavitation effects
    US-D612019-SMarch 16, 2010Colder Products CompanyCoupling body
    US-5989209-ANovember 23, 1999Oversby Pty Ltd.Grooved phaco-emulsification needle
    US-6705591-B2March 16, 2004Colder Products CompanyPoppet valve and method of making same
    US-6117151-ASeptember 12, 2000Circuit Tree Medical, Inc.Eye incision temperature protecting sleeve
    US-6575989-B1June 10, 2003Synergetics, Inc.Adjustable stiffness membrane scraper
    US-4578059-AMarch 25, 1986Fabricant Robert N, Gangemi Ronald JExtra-capsular cataract surgery system
    US-4904238-AFebruary 27, 1990Alcon Laboratories, Inc.Irrigation/aspiration handpiece
    EP-1607076-A1December 21, 2005Alcon Inc.Aufsatz für ein Handstück
    US-4941872-AJuly 17, 1990C. R. Bard, Inc.Control handle for surgical irrigation and suction device
    US-4047532-ASeptember 13, 1977Phillips Jack L, Dickinson Timothy EVacuum forcep and method of using same
    WO-9423773-A1October 27, 1994American Hydro-Surgical Instruments, Inc.Improved composite irrigation and suction probe
    US-5957928-ASeptember 28, 1999Kirwan Surgical Products, Inc.Handpiece for irrigation and aspiration during eye surgery and a method for manufacturing such a handpiece
    US-D649938-SDecember 06, 2011Colder Products CompanyFluid and electrical coupling
    US-5514086-AMay 07, 1996Sonique Surgical Systems, Inc.Multipiece ultrasonic probe for liposuction
    US-8454551-B2June 04, 2013Zevex, Inc.Removable adapter for phacoemulsification handpiece having irrigation and aspiration fluid paths
    US-6077287-AJune 20, 2000Endius IncorporatedSurgical instrument
    US-7329261-B2February 12, 2008Bausch & Lomb IncorporatedNo port phacoemulsification needle sleeve
    US-6852092-B2February 08, 2005Advanced Medical Optics, Inc.Handpiece system for multiple phacoemulsification techniques
    WO-9911313-A1March 11, 1999Alcon Laboratories, Inc.Tube flexible comportant des cannelures circulaires de diverses largeurs et profondeurs
    US-2004068270-A1April 08, 2004Advanced Medical Optics, Inc.Handpiece system for multiple phacoemulsification techniques
    US-2010295295-A1November 25, 2010Colder Products CompanyCoupling with Latch Mechanism
    US-6382593-B1May 07, 2002Colder Products CompanyFluid coupling
    FR-2713492-B1February 16, 1996Microfil Ind SaGuide tubulaire orientable, notamment pour un dispositif médico-chirurgical.
    US-5203772-AApril 20, 1993Pilot Cardiovascular Systems, Inc.Steerable medical device
    US-3805787-AApril 23, 1974Surgical Design CorpUltrasonic surgical instrument
    US-5106381-AApril 21, 1992Kabushiki Kaisha Machida SeisakushoBending device for an endoscope, catheter or the like
    US-6893414-B2May 17, 2005Breg, Inc.Integrated infusion and aspiration system and method
    US-5381782-AJanuary 17, 1995Spectrum Medsystems CorporationBi-directional and multi-directional miniscopes
    US-2007282348-A1December 06, 2007Lumpkin Christopher FOphthalmic microsurgical instrument
    US-2012179052-A1July 12, 2012Colder Products CompanyBiodegradable Fluid Delivery Device
    US-2005288650-A1December 29, 2005Alcon, Inc.Surgical method and apparatus
    US-5378234-AJanuary 03, 1995Pilot Cardiovascular Systems, Inc.Coil polymer composite
    US-4519385-AMay 28, 1985Snyder Laboratories, Inc.Lavage handpiece
    US-2001037082-A1November 01, 2001Hiroyasu Kamiyama, Nobuhiro Kagaminuma, Hidetoshi KashiwazakiSuction device with irrigation
    US-6544254-B1April 08, 2003Patricia Era BathCombination ultrasound and laser method and apparatus for removing cataract lenses
    WO-2013126766-A2August 29, 2013Colder Products CompanyRaccord pour vessie de fluide
    JP-H1071166-AMarch 17, 1998Nidek Co Ltd, 株式会社ニデック超音波手術装置
    JP-2002512845-AMay 08, 2002ビダ,インコーポレイティド成形された可撓性注入スリーブ
    US-4921482-AMay 01, 1990Hammerslag Julius G, Hammerslag Gary RSteerable angioplasty device
    US-6007555-ADecember 28, 1999Surgical Design CorpUltrasonic needle for surgical emulsification
    US-5308324-AMay 03, 1994Pilot Cardiovascular Systems, Inc.Steerable medical device
    US-5358507-AOctober 25, 1994Pat O. DailyThromboendarterectomy suction dissector
    US-5421955-B1January 20, 1998Advanced Cardiovascular SystemExpandable stents and method for making same
    US-5984889-ANovember 16, 1999Allergan Sales, Inc.Apparatus and method for delivering viscoelastic material to an eye
    CN-101083961-ADecember 05, 2007博士伦公司Surge dampening irrigation-aspiration tubing
    US-5084009-AJanuary 28, 1992Mackool Richard JFluid infusion sleeve for use during eye surgery
    US-7434842-B2October 14, 2008Colder Products CompanyCoupling with latch mechanism
    US-2005171469-A1August 04, 2005Jon CunninghamCatheter assembly with joinable catheters
    US-4445509-AMay 01, 1984Auth David CMethod and apparatus for removal of enclosed abnormal deposits
    US-5154696-AOctober 13, 1992Shearing Steven PPhacoemulsification, irrigation and aspiration method and apparatus
    US-5651783-AJuly 29, 1997Reynard; MichaelFiber optic sleeve for surgical instruments
    US-5052725-AOctober 01, 1991Colder Products CompanyTwo piece molded female coupling
    US-4099528-AJuly 11, 1978Sorenson Research Co., Inc.Double lumen cannula
    US-4998923-AMarch 12, 1991Advanced Cardiovascular Systems, Inc.Steerable dilatation catheter
    US-7469472-B2December 30, 2008Colder Products CompanyMethod of making molded coupler
    US-2010121260-A1May 13, 2010Ghannoum Ziad R, Glenn SussmanDistal Plastic End Infusion/Aspiration Tip
    US-2004153111-A1August 05, 2004Yasuo HosoadaMedical rinsing and sucking device
    US-4878900-ANovember 07, 1989Sundt Thoralf MSurgical probe and suction device
    US-5792098-AAugust 11, 1998C. R. Bard, Inc.Suction and irrigation handpiece and tip with detachable tube
    US-5876379-AMarch 02, 1999Alcon Laboratories, Inc.Syringe cannula holder
    US-2011062701-A1March 17, 2011Colder Products CompanyHinge Coupling Assembly
    US-2005159758-A1July 21, 2005Lawrence LaksOphthalmic irrigation-aspiration system
    US-2004153093-A1August 05, 2004Advanced Medical Optics, Inc.Bi-manual phacoemulsification apparatus and method
    US-5133159-AJuly 28, 1992Nestle S.A.Method for polishing silicone products
    US-2005054971-A1March 10, 2005Steen Mark E., Kadziauskas Kenneth E.System and method for modulated surgical procedure irrigation and aspiration
    US-6848602-B2February 01, 2005Colder Products CompanyCoupling and closure apparatus for dispensing valve assembly
    EP-0864310-A1September 16, 1998Inami & Co., Ltd.Membrane eraser
    WO-2011031448-A2March 17, 2011Entrigue Surgical, Inc.Appareil et procédés d'enlèvement de tissu
    US-3994297-ANovember 30, 1976Kopf J DavidOphthalmic instrument
    CN-101677854-BAugust 29, 2012视达日本有限公司Intraocular lens insertion instrument and intraocular lens packing insertion instrument
    US-2008011785-A1January 17, 2008Thomas Anthony Braun, Gary James HarrisConnect/Disconnect Coupling for a Container
    WO-2014197161-A1December 11, 2014Novartis AgDispositif d'irrigation/aspiration transformateur
    US-2003004455-A1January 02, 2003Kadziauskas Kenneth E., Rockley Paul W., Steen Mark E.Bi-manual phaco needle
    WO-9915120-A1April 01, 1999Alcon Laboratories, Inc.Surgical handpiece
    US-5261883-ANovember 16, 1993Alcon Surgical, Inc.Portable apparatus for controlling fluid flow to a surgical site
    US-2002190453-A1December 19, 2002Colder Products CompanyCoated spring and method of making the same
    JP-2006006953-AJanuary 12, 2006Alcon Inc, アルコン,インコーポレイティド外科方法および外科装置
    US-7967775-B2June 28, 2011Alcon, Inc.Irrigation/aspiration tip
    US-2007025811-A1February 01, 2007Colder Products CompanyCoupling Assembly with Overmold Sealing Structures and Method of Forming the Same
    US-5104158-AApril 14, 1992Colder Products CompanyTwo piece molded female coupling
    US-5921998-AJuly 13, 1999Inami & Co., Ltd.Membrane eraser
    US-6871669-B2March 29, 2005Colder Products CompanyConnector apparatus and method of coupling bioprocessing equipment to a media source
    WO-0228449-A3September 19, 2002Alcon Inc, Nader Nazarifar, Dennis L SteppeSurgical cassette and consumables for combined ophthalmic surgical procedure
    EP-1095641-A1May 02, 2001Becton, Dickinson and CompanyCapsulorhexis forceps
    US-7357779-B2April 15, 2008Graham David BarrettAspiration flow modulation device
    WO-0119255-A1March 22, 2001Synergetics, Inc.Adjustable stiffness membrane scraper
    WO-9807398-A1February 26, 1998Oversby Pty. Ltd.Intraocular irrigation/aspiration device
    US-7954515-B2June 07, 2011Colder Products CompanyCombination cap and plug assembly
    US-3264907-AAugust 09, 1966Mueller CoPerforator with slug retaining features
    US-2005245911-A1November 03, 2005Wright David W, Travis Lee WUser selectable grip for use with ophthalmic surgical handpieces
    US-2005234473-A1October 20, 2005Jaime ZachariasPhacoemulsification probe with tip shield
    US-2006116703-A1June 01, 2006Glaser Bert MInternal limiting membrane rake
    US-2003208218-A1November 06, 2003Kenneth E. Kadziauskas, Susanne M. RoslonUltrasonic needle cover
    US-8475403-B2July 02, 2013Cook Medical Technologies LlcAspirating and injecting device with biased closed distal opening
    US-6161578-ADecember 19, 2000Colder Products CompanyLow spill high flow quick coupling valve assembly
    US-5433746-AJuly 18, 1995Nestle S.A.Flexible intraocular lenses made from high refractive index polymers
    US-2009062751-A1March 05, 2009Newman Jr LionelMedical apparatus for suction and combination irrigation and suction
    EP-1820474-A2August 22, 2007Steven B. SiepserIntraocular lens extracting device
    US-2003069594-A1April 10, 2003Rockley Paul W., Olson Randall J.Multi-functional second instrument for cataract removal
    US-4671790-AJune 09, 1987Gyokusen Kosan Kabushiki KaishaApparatus for aspirating lens cortex with vacuum creating device
    US-5316041-AMay 31, 1994Colder Product CompanyQuick connection coupling valve assembly
    US-6649829-B2November 18, 2003Colder Products CompanyConnector apparatus and method for connecting the same for controlling fluid dispensing
    US-5897523-AApril 27, 1999Ethicon Endo-Surgery, Inc.Articulating ultrasonic surgical instrument
    US-2006057538-A1March 16, 2006Jacques HoeffleurClear view dental explorer
    US-2005049547-A1March 03, 2005Anspach Thomas D., Roland J. Thomas, Werner SchadSuction and directional irrigation apparatus
    US-7647954-B2January 19, 2010Colder Products CompanyConnector apparatus and method for connecting the same for controlling fluid dispensing
    US-6932788-B2August 23, 2005Johnson & Johnson Kabushiki KaishaSuction device with irrigation
    EP-1371347-B1February 09, 2011Oversby Pty. Ltd.Grooved phaco-emulsification needle
    US-5084012-AJanuary 28, 1992Kelman Charles DApparatus and method for irrigation and aspiration of interior regions of the human eye
    US-5845943-ADecember 08, 1998Colder Products CompanyHybrid insert for fluid couplings
    US-7704244-B2April 27, 2010Alcon, Inc.Surgical method
    US-6520929-B2February 18, 2003Advanced Medical OpticsInfusion sleeve for ophthalmic surgery
    DE-3822011-A1January 11, 1990Geuder Hans GmbhAugenchirurgisches instrument zum absaugen von linsenresten und laser-phako-kataraksystem mit zwei derartigen instrumenten
    US-2004089080-A1May 13, 2004Advanced Medical Optics, Inc.Test chamber for bi-manual lens extraction
    US-7695020-B2April 13, 2010Colder Products CompanyCoupling with latch mechanism
    US-4016879-AApril 12, 1977Dynasciences CorporationMulti-mode cannulating apparatus
    US-4630847-ADecember 23, 1986Colder Products CompanyMultiple tube connector
    US-2012161051-A1June 28, 2012Randall Scott Williams, Patrick Thomas GerstBreakaway Coupling Assembly
    US-7352771-B2April 01, 2008Colder Products CompanyData collision detection device and method
    DE-3822011-C2April 07, 1994Geuder Hans GmbhAugenchirurgisches Instrument zum Absaugen von Linsenresten und Laser-Phako-Kataraksystem mit zwei derartigen Instrumenten
    JP-H04176457-AJune 24, 1992Nidek Co LtdPerfusion sucker
    US-5603710-AFebruary 18, 1997Infinitech, Inc.Laser delivery system with soft tip
    US-7394375-B2July 01, 2008Colder Products CompanyCoupler with radio frequency identification tag
    US-5286256-AFebruary 15, 1994Mackool Richard JFluid infusion sleeve
    US-2013092271-A1April 18, 2013Colder Products CompanyCoupling
    US-2009170052-A1July 02, 2009Roman BorczykDental Apparatus for Irrigating Root Canals of Teeth and Method for Irrigating Root Canals of Teeth
    US-2005237241-A1October 27, 2005Garber Richard S, Lafave Collin JAntenna for radio frequency identification reader
    EP-0778039-A1June 11, 1997Sarcos, Inc.Fil de guidage pour cathéter
    US-6902558-B2June 07, 2005Microsurgical Technology, Inc.Aspirator tip
    DE-4313245-C2March 27, 1997Geuder Hans GmbhHohlnadel für ein augenchirurgisches Instrument
    US-2005154434-A1July 14, 2005Adam Simon, Lifshey Arthur L., Elena FattoriClinical syringe with electrical stimulation aspects
    US-2008167604-A1July 10, 2008Alcon, Inc.Irrigation/Aspiration Tip
    WO-2012078319-A1June 14, 2012Alcon Research, Ltd.Appareil d'irrigation/aspiration coaxial et bimanuel combiné
    US-2002170731-A1November 21, 2002Colder Products CompanyConnector apparatus and method for connecting the same for controlling fluid dispensing
    US-7631660-B2December 15, 2009Colder Products CompanyAseptic coupling devices
    US-7708025-B2May 04, 2010Colder Products CompanyPoppet valve member
    US-2002011730-A1January 31, 2002Stickan Kelley AllenApparatus and method for connecting flow conveyances
    US-7080665-B2July 25, 2006Colder Products CompanyConnector apparatus and method of coupling bioprocessor equipment to a media source
    WO-2012088463-A1June 28, 2012Colder Products CompanyEnsemble de couplage de cassure
    US-8784361-B2July 22, 2014Alcon Research, Ltd.Combined coaxial and bimanual irrigation/aspiration apparatus
    US-7841357-B2November 30, 2010Colder Products CompanyConnection state sensing for coupling device
    EP-1607077-A1December 21, 2005Takayuki Akahoshi, Nallakrishnan, RaviAiguille de phacoemulsification
    US-6830555-B2December 14, 2004Advanced Medical OpticsMulti-functional second instrument for cataract removal
    US-6978800-B2December 27, 2005Colder Products CompanyClosure device with self-aligning poppet
    JP-H09313522-ADecember 09, 1997Nidek Co Ltd, 株式会社ニデックOphthalmic operation device
    US-2007244425-A1October 18, 2007Pond Gary JIrrigation and aspiration handpiece device

NO-Patent Citations (20)

    Title
    Alcon Cataract Product Catalog, 2008/2009, pp. 17-33, copyright Jun. 2008, 19 pages.
    Alcon Silicone I/A Tip, Alcon, Inc., dated Jan. 1, 2007, CAT281, 2 pgs.
    Araujo-Gomes, Fernando, "Solving the Pitfalls of Bimanual Phacoemulsification-Oval Instruments Do Save Energy", European Ophthalmic Review, Touch Briefings, 2007, pp. 39-41.
    Chang, David F. "Transitioning to Bimanual Microincisional Phacoemulsification", Cataract & Refractive Surgery Today, Sep. 2004, pp. 68-71.
    Dr. Ulrich Naumann, Notice of Opposition and EPO Communication, Sep. 23, 2010, 44 pages.
    English translation of Chinese Office Action issued for CN201280062792.4 dated Aug. 27, 2015, 7 pgs.
    EP1852095; Opposition Letter dated Sep. 27, 2012-English translation.
    EP1852095; Opposition Submission; Letter dated Sep. 26, 2011-English translation.
    EP1852095; Prosecution History dated Apr. 25, 2007, Opposition filed.
    Extended European Search Report issued for Patent Application No. EP 12860162, dated Aug. 26, 2014, 6 pgs.
    International Search Report and Written Opinion for PCT/US2009/060315, 10 pages, dated Jan. 12, 2010.
    International Search Report and Written Opinion for PCT/US2011/060751, 7 pages, dated Feb. 6, 2012.
    International Search Report and Written Opinion issued for PCT/US2012/069646 dated Mar. 5, 2013, 8 pgs.
    International Searching Authority, International Search Report, PCT/US2014/037293, Sep. 26, 2014, 2 pages.
    International Searching Authority, Written Opinion of the International Searching Authority, PCT/US2014/037293, Sep. 26, 2014, 4 pages.
    Lane, Stephen, Prosecution History, U.S. Appl. No. 12/962,082, filed Dec. 7, 2010, 435 pages.
    Lou, MD, PhD, B. et al. "Residual Lens Cortex Material: Potential Risk Factor for Endophthalmitis after Phacoemulsification Cataract Surgery," Journal of Cataract Refractive Surgery, vol. 39, Feb. 2013, 8 pages.
    Packer, Mark, et. al. "Bimanual Microincisional Phacoemulsification", Cataract & Refractive Surgery Today, Nov./Dec. 2005, pp. 60-62.
    Schaller, Philipp, Prosecution History, U.S. Appl. No. 13/686,430, filed Nov. 27, 2012, 1050 pages.
    Wang, Yujuan et al. "Comparison of bimanual and micro-coaxial phacoemulsification with torsional ultrasound" by Acta Ophthalmologica 2012, 4 pages.

Cited By (0)

    Publication numberPublication dateAssigneeTitle